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This talk is about Iris

A language independent higher-order
separation logic with a simple foundations
for modular reasoning about fine-grained
concurrency in Coq.

I Fine-grained concurrency: synchronization primitives and
lock-free data structures are implemented

I Modular: reusable and composable specifications

I Language independent: parametrized by the language

I Simple foundations: small set of primitive rules

I Coq: provides practical support for doing proofs in Iris

This talk: simplifying the foundations of Iris
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Aren’t there enough logics for concurrency yet?

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)

RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)
HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

Iris 2.0 (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)

Hobor-al (2008)

FSL (2016)

Iris 3.0 (2016)

Picture by Ilya Sergey
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Problem statement

All of these logics bake in complicated protocol mechanisms:

The Iris approach: derive these protocol mechanisms (+ more)
from a small set of primitives
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The history of Iris

Iris 1. Many protocol mechanisms can be
derived from just 2 primitives:

I User-defined ghost state

I Invariants

Iris 2. Higher-order ghost state:

I More powerful protocol mechanisms

I Unify invariants and ghost state in the
model

Iris 3. Apply the Iris methodology to itself:

I Reduce the logic to a bare minimum

I Define Hoare triples, invariants, view
shifts, . . . as derived notions

User-defined

ghost state:

PCM M

Logic

Iris(M)

Logic

Iris(M)
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The Iris 3 base logic

Higher-order logic (∧, ∨, ⇒, ∀, ∃, =) with:

I The BI connectives ∗ and −∗
I A notion of resource ownership Own( )

I A handful of modalities ., 2 and |V
I A guarded fixpoint combinator µ x .P

Simple enough so that:

I Each connective has just a single purpose

I It is easy to model and formalize (in Coq)

Expressive enough so that:

I Expressive program logics – like the original Iris program logic
– can be defined concisely

I It provides more freedom beyond Hoare logic: logical relations
for program refinements, modeling type systems, . . .
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Preview of the rules of the Iris 3 base logic
Laws of (affine) bunched implications

True ∗ P a` P
P ∗ Q ` Q ∗ P

(P ∗ Q) ∗ R ` P ∗ (Q ∗ R)
P1 ` Q1 P2 ` Q2

P1 ∗ P2 ` Q1 ∗ Q2

P ∗ Q ` R

P ` Q −∗ R

P ` Q −∗ R

P ∗ Q ` R

Laws for resources and validity

Own(a) ∗ Own(b) a` Own(a · b) True ` Own(ε) Own(a) ` 2 Own(|a|)
Own(a) ` V(a) V(a · b) ` V(a) V(a) ` 2V(a)

Laws for the basic update modality

P ` Q

|VP ` |VQ
P ` |VP |V|VP ` |VP

Q ∗ |VP ` |V(Q ∗ P)
a  B

Own(a) ` |V∃b ∈ B.Own(b)

Laws for the always modality

P ` Q

2 P ` 2 Q
2 P ` P

True ` 2 True
2 (P ∧ Q) ` 2 (P ∗ Q)

2 P ∧ Q ` 2 P ∗ Q

2 P ` 2 2 P
∀x. 2 P ` 2 ∀x. P
2 ∃x. P ` ∃x. 2 P

Laws for the later modality

P ` Q

. P ` .Q
(. P ⇒ P) ` P

∀x. . P ` . ∀x. P
. ∃x. P ` . False ∨ ∃x. . P

. (P ∗ Q) a` . P ∗ .Q
2 . P a` . 2 P

Laws for timeless assertions

. P ` . False ∨ (. False⇒ P) .Own(a) ` ∃b.Own(b) ∧ .(a = b)
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Part #1: brief introduction to
concurrent separation logic (CSL)
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Hoare triples and separation logic

Hoare triples for partial program correctness:

{P}e{w .Q}

Precondition Binder for return value Postcondition

If the initial state satisfies P, then:

I e does not get stuck/crash

I if e terminates with value v , the final state satisfies Q[v/w ]

Example:

{x 7→ v1 ∗ y 7→ v2}swap(x, y){w .w = () ∧ x 7→ v2 ∗ y 7→ v1}

the ∗ ensures that x and y are different
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Concurrent separation logic [O’Hearn]

The par rule:
{P1}e1{Q1} {P2}e2{Q2}
{P1 ∗ P2}e1||e2{Q1 ∗ Q2}

For example:
{x 7→ 4 ∗ y 7→ 6}

x := ! x + 2 y := ! y + 2

{x 7→ 6 ∗ y 7→ 8}

Works great for concurrent programs without shared memory:
concurrent quick sort, concurrent merge sort, . . .
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What about shared state/racy programs?

A classic problem:

{True}

let x = ref(0) in

{x 7→ 0}
{??} {??}

fetch and add(x, 2) fetch and add(x, 2)

{??} {??}

! x

{w .w = 4}

Where fetch and add(x, y) is the atomic version of x := ! x + y.

Problem: can only give ownership of x to one thread
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Sharing resources using invariants

The invariant assertion R

N

expresses that R is maintained
as an invariant on the state

Invariant opening:

R

N

` {R ∗ P} e {R ∗ Q}

E

e atomic

R

N

` {P} e {Q}

E]N

Invariant allocation:

R

N

` {P} e {Q}

E

{R ∗ P} e {Q}

E

Technical detail: names are needed to avoid reentrancy, i.e.,
opening the same invariant twice
Other technical detail: the later . is needed to support

impredicative invariants, i.e., . . . R
N2
. . .

N1
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Invariants in action

Let us consider a simpler problem first:

{True}
let x = ref(0) in

{x 7→ 0}
allocate ∃n. x 7→ n ∧ even(n)

{True} {True}
{x 7→ n ∧ even(n)}

fetch and add(x, 2)

{x 7→ n + 2 ∧ even(n + 2)}

{x 7→ n ∧ even(n)}

fetch and add(x, 2)

{x 7→ n + 2 ∧ even(n + 2)}
{True} {True}
{x 7→ n ∧ even(n)}

! x

{n. x 7→ n ∧ even(n)}

{n. even(n)}

Problem: still cannot prove it returns 4
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Ghost variables
Consider the invariant:

∃n. x 7→ n ∗ . . .

How to relate the quantified value to the state of the threads?

Solution: ghost variables

Ghost variables are allocated in pairs:

True ⇒ |V∃γ. γ ↪→• n︸ ︷︷ ︸
in the invariant

∗ γ ↪→◦ n︸ ︷︷ ︸
in the Hoare triple

When you own both parts you obtain that the values are equal and
can update both parts:

γ ↪→• n ∗ γ ↪→◦ m ⇒ n = m

γ ↪→• n ∗ γ ↪→◦ m ⇒ |V(γ ↪→• n′ ∗ γ ↪→◦ n′)
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Mechanisms for concurrent reasoning in Iris

The Iris approach:

I Ghost variables are
generalized to range over
any user-provided RA

I RAs provide uniform
treatment of fractional
permissions, state transition
systems, . . .

New in Iris 3, use ghost state to:

I Define invariants P
N

I Define Hoare triples
{P} e {Q}

Resource algebra (RA):

I Carrier M

I Composition
(·) : M → M → M

I Validity predicate V ⊆ M

Satisfying certain laws

Rules for ghost state in Iris:

V(a)⇒ |V∃γ. γ ↪→ a
γ ↪→ a ∗ γ ↪→ b ⇔ γ ↪→ (a · b)

γ ↪→ a⇒ V(a)

∀af .V(a · af)⇒ V(b · af)
γ ↪→ a⇒ |Vγ ↪→ b
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generalized to range over
any user-provided RA

I RAs provide uniform
treatment of fractional
permissions, state transition
systems, . . .

New in Iris 3, use ghost state to:

I Define invariants P
N

I Define Hoare triples
{P} e {Q}

Resource algebra (RA):

I Carrier M

I Composition
(·) : M → M → M

I Validity predicate V ⊆ M

Satisfying certain laws

Rules for ghost state in Iris:

V(a)⇒ |V∃γ. γ ↪→ a
γ ↪→ a ∗ γ ↪→ b ⇔ γ ↪→ (a · b)

γ ↪→ a⇒ V(a)

∀af .V(a · af)⇒ V(b · af)
γ ↪→ a⇒ |Vγ ↪→ b
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Part #2: encoding Hoare triples and invariants
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Encoding Hoare triples

Step 1: define Hoare triple in terms of weakest preconditions:

{P} e {w .Q} , 2(P −∗ wp e {w .Q})

where wp e {w .Q} gives the weakest precondition under which:

I all executions of e are safe

I all return values v of e satisfy the postcondition Q[v/w ]

Step 2: define weakest precondition:

wp e {w .Q} ,


Q[e/w ] if e ∈ Val

∀σ. red(e, σ) ∧
. (∀e2, σ2. (e, σ)→t (e2, σ2) −∗

wp e2 {w .Q})

if e 6∈ Val

Recursive occurrence guarded by a later .
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Adding the points-to connective
How to connect the states σ to ` 7−→ v?

wp e {w .Q} ,



Q[e/w ] if e ∈ Val

∀σ.

γ ↪→• σ −∗ |V

red(e, σ) ∧
. (∀e2, σ2. (e, σ)→t (e2, σ2) −∗

|V
γ ↪→• σ2 ∗

wp e2 {w .Q})

if e 6∈ Val

` 7−→ v , ???

Solution: ghost variables

Using an appropriate resource algebra (RA) we can obtain:

γ ↪→• σ ∗ γ ↪→◦ [` :=w ]⇒ σ(`) = w

γ ↪→• σ ∗ γ ↪→◦ [` := v ]⇒ |V(γ ↪→• σ[` :=w ] ∗ γ ↪→◦ [` :=w ])

γ ↪→• σ ⇒ |V(γ ↪→• σ[` :=w ] ∗ γ ↪→◦ [` :=w ]) if ` /∈ dom(σ)
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Adding fork

wp e {w .Q} ,



|VQ[e/w ] if e ∈ Val

∀σ. γ ↪→• σ −∗ |V
red(e, σ) ∧
. (∀e2, σ2, ~ef . (e, σ)→t (e2, σ2, ~ef ) −∗ |V

γ ↪→• σ2 ∗ wp e2 {w .Q} ∗

∗e′∈~ef wp e ′ {w .True})

if e 6∈ Val

` 7−→ v , γ ↪→◦ [` := v ]

Key point: separating conjunction ensures that the resources of
the new threads ~ef are disjointly subdivided between threads
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Defining invariants

Key idea: thread the global invariant W through weakest
preconditions:

W , ∃I : InvName
fin−⇀ iProp. γinv ↪→• I ∗∗ι∈dom(I ) and ι is not opened . I (ι)

The invariant assertion can be defined as:

P
N

, ∃ι ∈ N . γinv ↪→◦ [ι :=P]

Interesting points:

I Need to define a small protocol mechanism to keep track of
whether invariants have been opened or not

I Ghost state γinv ↪→• I and γinv ↪→◦ [ι :=P] involve ownership
of Iris propositions, need higher-order ghost state
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In the paper and the Coq formalization

I Full definition of invariants P
N

I All about the modalities 2, . and |V
I Adequacy of weakest preconditions

I Paradox showing that . is ‘needed’ for impredicative invariants

The Essence of
Higher-Order Concurrent Separation Logic

Robbert Krebbers1, Ralf Jung2, Aleš Bizjak3,
Jacques-Henri Jourdan2, Derek Dreyer2, and Lars Birkedal3

1 Delft University of Technology, The Netherlands
2 Max Planck Institute for Software Systems (MPI-SWS), Germany

3 Aarhus University, Denmark

Abstract. Concurrent separation logics (CSLs) have come of age, and
with age they have accumulated a great deal of complexity. Previous
work on the Iris logic attempted to reduce the complex logical mecha-
nisms of modern CSLs to two orthogonal concepts: partial commutative
monoids (PCMs) and invariants. However, the realization of these con-
cepts in Iris still bakes in several complex mechanisms—such as weakest
preconditions and mask-changing view shifts—as primitive notions.

In this paper, we take the Iris story to its (so to speak) logical conclu-
sion, applying the reductionist methodology of Iris to Iris itself. Specifi-
cally, we define a small, resourceful base logic, which distills the essence
of Iris: it comprises only the assertion layer of vanilla separation logic,
plus a handful of simple modalities. We then show how the much fancier
logical mechanisms of Iris—in particular, its entire program specification
layer—can be understood as merely derived forms in our base logic. This
approach helps to explain the meaning of Iris’s program specifications
at a much higher level of abstraction than was previously possible. We
also show that the step-indexed “later” modality of Iris is an essential
source of complexity, in that removing it leads to a logical inconsistency.
All our results are fully formalized in the Coq proof assistant.

1 Introduction

In his paper The Next 700 Separation Logics, Parkinson [27] observed that “sep-
aration logic has brought great advances in the world of verification. However,
there is a disturbing trend for each new library or concurrency primitive to re-
quire a new separation logic.” He argued that what is needed is a general logic
for concurrent reasoning, into which a variety of useful specifications can be en-
coded via the abstraction facilities of the logic. “By finding the right core logic,”
he wrote, “we can concentrate on the difficult problems.”

The logic he suggested as a potential candidate for such a core concurrency
logic was deny-guarantee [12]. Deny-guarantee was indeed groundbreaking in its
support for “fictional separation”—the idea that even if threads are concurrently
manipulating the same shared piece of physical state, one can view them as oper-
ating on logically disjoint pieces of it and use separation logic to reason modularly
about those pieces. It was, however, far from the last word on the subject. Rather,
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Thank you!

Take home messages:

I Hoare triples and invariants can be defined in the assertion
logic of separation logic (+ some modalities)

I Iris is no longer just a program logic, but also a framework to
define concurrent program logics

I Iris is implemented in Coq and used for many purposes
(modeling type systems, logical relations, program logics)

Download Iris at http://iris-project.org/

http://iris-project.org/

