The Essence of
Higher-Order Concurrent Separation Logic

Robbert Krebbers! Ralf Jung® Ale¥ Bizjak®
Jacques-Henri Jourdan?  Derek Dreyer?  Lars Birkedal®

IDelft University of Technology, The Netherlands
2MPI-SWS, Saarland Informatics Campus, Germany

3Aarhus University, Denmark

April 18, 2017 @ ESOP, Uppsala, Sweden



This talk is about lIris

A language independent higher-order
separation logic with a simple foundations
for modular reasoning about fine-grained
concurrency in Coq.




This talk is about lIris

A language independent higher-order
separation logic with a simple foundations
for modular reasoning about fine-grained
concurrency in Coq.

» Fine-grained concurrency: synchronization primitives and
lock-free data structures are implemented



This talk is about lIris

A language independent higher-order
separation logic with a simple foundations
for modular reasoning about fine-grained
concurrency in Coq.

» Fine-grained concurrency: synchronization primitives and
lock-free data structures are implemented

» Modular: reusable and composable specifications



This talk is about lIris

A language independent higher-order
separation logic with a simple foundations
for modular reasoning about fine-grained
concurrency in Coq.

» Fine-grained concurrency: synchronization primitives and
lock-free data structures are implemented

» Modular: reusable and composable specifications

» Language independent: parametrized by the language



This talk is about lIris

A language independent higher-order
separation logic with a simple foundations
for modular reasoning about fine-grained
concurrency in Coq.

v

Fine-grained concurrency: synchronization primitives and
lock-free data structures are implemented

v

Modular: reusable and composable specifications

v

Language independent: parametrized by the language

v

Simple foundations: small set of primitive rules



This talk is about lIris

A language independent higher-order
separation logic with a simple foundations
for modular reasoning about fine-grained
concurrency in Coq.

» Fine-grained concurrency: synchronization primitives and
lock-free data structures are implemented

v

Modular: reusable and composable specifications

v

Language independent: parametrized by the language

v

Simple foundations: small set of primitive rules

v

Coq: provides practical support for doing proofs in lIris



This talk is about lIris
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separation logic with a simple foundations
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» Fine-grained concurrency: synchronization primitives and
lock-free data structures are implemented

v

Modular: reusable and composable specifications

v

Language independent: parametrized by the language

v

Simple foundations: small set of primitive rules

v

Coq: provides practical support for doing proofs in lIris

This talk: simplifying the foundations of Iris



Aren't there enough logics for concurrency yet?
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Problem statement

All of these logics bake in complicated protocol mechanisms:
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The lIris approach: derive these protocol mechanisms (4 more)
from a small set of primitives
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The history of Iris

Iris 1. Many protocol mechanisms can be
derived from just 2 primitives:

> User-defined ghost state

» |nvariants

Iris 2. Higher-order ghost state:
» More powerful protocol mechanisms

» Unify invariants and ghost state in the
model

Iris 3. Apply the Iris methodology to itself:
> Reduce the logic to a bare minimum

» Define Hoare triples, invariants, view
shifts, ... as derived notions

User-defined
ghost state:
CMRA M

Base logic
Baselris(M)

Logic
Iris(M)
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The Iris 3 base logic

Higher-order logic (A, V, =, V, 3, =) with:
» The Bl connectives * and —
» A notion of resource ownership Own(_)
» A handful of modalities >, O and =
» A guarded fixpoint combinator p x. P

Simple enough so that:
» Each connective has just a single purpose

» It is easy to model and formalize (in Coq)

Expressive enough so that:
» Expressive program logics — like the original Iris program logic
— can be defined concisely

> It provides more freedom beyond Hoare logic: logical relations
for program refinements, modeling type systems, ...



Preview of the rules of the Iris 3 base logic

Laws of (affine) bunched implications
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Part #1: brief introduction to
concurrent separation logic (CSL)
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Hoare triples for partial program correctness:

{P}e{va. Q}
[Binder for return valuej

If the initial state satisfies P, then:

» e does not get stuck/crash

» if e terminates with value v, the final state satisfies Q[v/w]|

Example:

{x—= vi*xy— wlswap(x, Y){w.w = ()Ax+> vaxy vi}

[the * ensures that x and y are different}
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Concurrent separation logic [O'Hearn]

The par rule:
{P1}er{Q:} {P2}ex{Q>}
{P1* P2 }er|lea{ Q1 * Q2}

For example:
{x—4xy— 6}
x4} [ {y—6)
x=Ix+2|y=ly+2
{x— 6} {y~ 8}
{x+— 6xy— 8}

Works great for concurrent programs without shared memory:
concurrent quick sort, concurrent merge sort, . ..



What about shared state/racy programs?
A classic problem:
let x = ref(0)in

fetch_and_add(x,2) || fetch_and_add(x,2)

I x

Where fetch_and_add(x, y) is the atomic version of x:=!x+ y.
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What about shared state/racy programs?

A classic problem:

{True}

let x = ref(0)in

{x+— 0}

i .

fetch_and_add(x,2) || fetch_and_add(x,2)

{77} {77}
I x

{W.W:4}

Where fetch_and_add(x, y) is the atomic version of x:=!x+ y.

Problem: can only give ownership of x to one thread
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Sharing resources using invariants
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Invariant opening:
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N
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Sharing resources using invariants

. . . N . .
The invariant assertion @J expresses that R is maintained
as an invariant on the state

Invariant opening:
RV F{sR«Ple{-R+Q}e e atomic
N
[RI" F{P}e{Q}eun

Invariant allocation:

RV F{PYe{Q)e
{>Rx*P}e{Q}

Technical detail: names are needed to avoid reentrancy, i.e.,
opening the same invariant twice

Other technical detail: the later > is needed to support
1

. L . . N
impredicative invariants, i.e., @ z.
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Invariants in action

Let us consider a simpler problem first:

{True}
let x =ref(0) in
{x — 0}
allocate | In. x — n A even(n)]
{True} {True}
{x— nAeven(n)} {x— nAeven(n)}
fetch_and_add(x, 2) fetch_and_add(x,2)
{x—=n+2Aeven(n+2)} {x— n+2Aeven(n+2)}
{True} {True}
{x+— nAeven(n)}
I'x
{n.x+— nAeven(n)}

{n.even(n)}

Problem: still cannot prove it returns 4
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Ghost variables
Consider the invariant:

‘Elnl,ng.x&—> (N1 4+ M) %Y1 e N1 * Y2 e ng‘

How to relate the quantified value to the state of the threads?

) . .
\\(‘a Solution: ghost variables

Ghost variables are allocated in pairs:

True = PB3y. v<en * Y <% N
——
in the invariant in the Hoare triple

When you own both parts you obtain that the values are equal and
can update both parts:

Ve Nxy=em = n=m
Y e N kY o m = By e n xy 3 n)



Mechanisms for concurrent reasoning in Iris

The Iris approach: Resource algebra (RA):

» Ghost variables are > Carrier M
generalized to range over » Composition
any user-provided RA ():M—>M—=M

» RAs provide uniform » Validity predicate V C M
treatment of fractional Satisfying certain laws
permissions, state transition
systems, ... Rules for ghost state in Iris:
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Mechanisms for concurrent reasoning in Iris

The Iris approach:

» Ghost variables are
generalized to range over
any user-provided RA

» RAs provide uniform
treatment of fractional
permissions, state transition
systems, ...

New in Iris 3, use ghost state to:

.. . N
» Define invariants
» Define Hoare triples

{Pe{@}

Resource algebra (RA):

> Carrier M
» Composition
O M=>M-=>M
» Validity predicate V C M

Satisfying certain laws

Rules for ghost state in Iris:

V(@)= B3Iy —a
y—axy—=b&y—(a-b)
v —a=V(a)

Var. V(a-af) = V(b- ar)
y—sa=>pPy<—=b




Part #2: encoding Hoare triples and invariants
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Step 1: define Hoare triple in terms of weakest preconditions:
{P}e{w.Q} = O(P +wpe{w.Q})

where wp e {w. Q} gives the weakest precondition under which:
> all executions of e are safe

» all return values v of e satisfy the postcondition Q[v/w]
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Step 1: define Hoare triple in terms of weakest preconditions:
{P}e{w.Q} = O(P +wpe{w.Q})

where wp e {w. Q} gives the weakest precondition under which:
> all executions of e are safe

» all return values v of e satisfy the postcondition Q[v/w]
Step 2: define weakest precondition:
Qle/w] if e € Val

wpe{w. Q)2 Vo.red(e, o) A if e & Val
> (Vez, 02. (e,0) —+ (€2,02) =
wp ez {w. Q})
/l\

[Recursive occurrence guarded by a later D]
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Adding the points-to connective
How to connect the states o to £ — v7?

[ | Qle/w] if e € Val
Vo. vy <6 0 = B if e ¢ Val
wpe{w.Q} = red(e, o) A

> (Vey,02.(e,0) = (e2,02) =« =
v e o2 ¥ wp 2 {w. Q})

\
U= v 2y [li=yv]

Solution: ghost variables

Using an appropriate resource algebra (RA) we can obtain:
YTy [i=w] = 0(l) =w
Ve XY [Li=V] = B (7 e o[li=w] vy = [(:=w])

Ve 0= B(7 e o[li=w]xy % [£:=w]) if £ ¢ dom(o)



Adding fork

B Qle/w] if e € Val
Vo.v e 0 = B if e ¢ Val
red(e, o) A

wpe{w.Q} =

I>(V62,0'2, 5f. (e, U) —t (62,0'2, é}) —k }3
Y e 02 xWp &2 {w. Q} *
Ko wp € {w.True})

ls v ey ey [0:=V]

Key point: separating conjunction ensures that the resources of
the new threads & are disjointly subdivided between threads




Defining invariants

Key idea: thread the global invariant W through weakest
preconditions:

W 2 31 - InvName ™ iProp. iy <e | *
>|<Ledom(l) and ¢ is not opened > I(L)

The invariant assertion can be defined as:

NéEILEJ\/’.%Nv o [t:=P]



Defining invariants

Key idea: thread the global invariant W through weakest
preconditions:

W 2 31 - InvName ™ iProp. iy <e | *
>|<Ledom(l) and ¢ is not opened > I(L)

The invariant assertion can be defined as:

NéEILGJ\/'.%Nv o [t:=P]

Interesting points:
> Need to define a small protocol mechanism to keep track of
whether invariants have been opened or not

» Ghost state yixy < | and vixy < [t := P] involve ownership
of Iris propositions, need higher-order ghost state



In the paper and the Coq formalization

Full definition of invariants @N

>

» All about the modalities O, > and =

» Adequacy of weakest preconditions

» Paradox showing that i is ‘needed’ for impredicative invariants
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Abstract. Concurrent separation logics (CSLs) have come of age, and
with age they have accumulated a great deal of complexity. Previous
work on the Iris logic attempted to reduce the complex logical mecha-
nisms of modern CSLs to two orthogonal concepts: partial commutative



Thank you!

Take home messages:

» Hoare triples and invariants can be defined in the assertion
logic of separation logic (+ some modalities)

» lris is no longer just a program logic, but also a framework to
define concurrent program logics

» Iris is implemented in Coq and used for many purposes
(modeling type systems, logical relations, program logics)

Download lIris at http://iris-project.org/
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