Separation algebras for C verification in Coq

Robbert Krebbers

ICIS, Radboud University Nijmegen, The Netherlands

July 18, 2014 @ VSTTE, Vienna, Austria



Context of this talk

== Formalin (Krebbers & Wiedijk)

» Compiler independent C semantics in Coq *
» Take underspecification by C11 seriously
» Operational semantics

Executable semantics

v

v

Typing and type checker

v

Separation logic



Context of this talk

== Formalin (Krebbers & Wiedijk)

» Compiler independent C semantics in Coq *
» Take underspecification by C11 seriously
» Operational semantics

Executable semantics

v

v

Typing and type checker

v

Separation logic = topic of this talk



Why compiler (in)dependence matters

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("%d %d\n", x, y);

}



Why compiler (in)dependence matters

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("%d %d\n", x, y);

}

Let us try some compilers

» Clang prints 4 7, seems just left-right



Why compiler (in)dependence matters

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("%d %d\n", x, y);

}

Let us try some compilers
» Clang prints 4 7, seems just left-right

» GCC prints 4 8, does not correspond to any evaluation order



Why compiler (in)dependence matters

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("%d %d\n", x, y);

}

Let us try some compilers
» Clang prints 4 7, seems just left-right

» GCC prints 4 8, does not correspond to any evaluation order

This program violates the sequence point restriction
» due to two unsequenced writes to x
» undefined behavior: garbage in, garbage out = all bets are off

» thus both compilers are right



Why compiler (in)dependence matters

int main() {
int x;
int y = (x = 3) + (x = 4);
printf ("%d %d\n", x, y);

}

Let us try some compilers
» Clang prints 4 7, seems just left-right

» GCC prints 4 8, does not correspond to any evaluation order

This program violates the sequence point restriction
» due to two unsequenced writes to x
» undefined behavior: garbage in, garbage out = all bets are off

» thus both compilers are right

Formalin should account for all undefined behavior



Separation logic for C [Krebbers, POPL'14]

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} e {Q1} {P2} e2 { @2}
{P1*P2}er@ex{Q * Q}




Separation logic for C [Krebbers, POPL'14]

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} e {Q1} {P2} e2 { @2}
{P1*P2}er@ex{Q * Q}

What does this mean:
» Split the memory into two disjoint parts
> Prove that e; and e can be executed safely in their part

» Now e; ® &> can be executed safely in the whole memory



Separation logic for C [Krebbers, POPL'14]

Observation: non-determinism corresponds to concurrency
Idea: use the separation logic rule for parallel composition

{P1} e {Q1} {P2} e2 { @2}
{P1*P2}er@ex{Q * Q}

What does this mean:
» Split the memory into two disjoint parts
> Prove that e; and e can be executed safely in their part

» Now e; ® &> can be executed safely in the whole memory

Disjointness = no sequence point violation



Connectives of separation logic
The connectives of separation logic are defined as:

emp:=m.m=1{

PxQ:=X m.dmim. m=mUmAPm AN Qms



Connectives of separation logic
The connectives of separation logic are defined as:

emp:=m.m=1{

PxQ:=X m.dmim. m=mUmAPm AN Qms

Definition of m

» Complex memory based on structured trees

» Fractional permissions for share-accounting
For example needed in x + x

» Existence permissions for pointer arithmetic
For example needed in x(p + 1) = (xp = 1)

» Locked permissions for sequence point restriction



Connectives of separation logic
The connectives of separation logic are defined as:

emp:=m.m=1{

PxQ:=X m.dmim. m=mUmAPm AN Qms

Definition of m

» Complex memory based on structured trees

» Fractional permissions for share-accounting
For example needed in x + x

» Existence permissions for pointer arithmetic
For example needed in x(p + 1) = (xp = 1)

» Locked permissions for sequence point restriction

Use separation algebras [Calcagno et al., LICS'07] to abstractly
describe the permissions and memory



Tweaked version of separation algebras in Coq

Def: A simple separation algebra consists of a set A, with:
» An element 0 : A
> A predicate valid : A — Prop
» Binary relations 1, C : A— A — Prop
» Binary operations U, \ :A—>A— A



Tweaked version of separation algebras in Coq

Def: A simple separation algebra consists of a set A, with:
» An element 0 : A
> A predicate valid : A — Prop
» Binary relations 1, C : A— A — Prop
» Binary operations U, \ :A—>A— A

[Total instead of partial}




Tweaked version of separation algebras in Coq

Def: A simple separation algebra consists of a set A, with:
» An element 0 : A
> A predicate valid : A — Prop
» Binary relations L, C : A— A — Prop
» Binary operations U, \ :A—>A— A

[Total instead of partial} [Disjointness}




Tweaked version of separation algebras in Coq

Def: A simple separation algebra consists of a set A, with:
» An element () : A
> A predicate valid : A — Prop
> Binary relatighs L, C : A— A — Prop
» Binary opérations U, \ :A—>A— A

ETo avoid subset types] [Total instead of partial} [Disjointness}




Tweaked version of separation algebras in Coq

Def: A simple separation algebra consists of a set A, with:
» An element () : A
> A predicate valid : A — Prop
> Binary relatighs L, C : A— A — Prop
» Binary opérations U, \ :A—>A— A

ETo avoid subset types] [Total instead of partial} [Disjointness}

Satisfying the following laws:
1.Ifx Ly, theny L xand xUy=yUx
2. If valid x, then @ L. x and P U x = x

3. Associative, non-empty, cancellative, positive, ...



Example: fractional separation algebra

Fractional permissions [0, 1]p [Boyland, SAS'09]

No access Read-only Exclusive access

Rational numbers make it possible to split Read-only permissions



Example: fractional separation algebra

Fractional permissions [0, 1]p [Boyland, SAS'09]

No access Read-only Exclusive access

Rational numbers make it possible to split Read-only permissions

Def: The simple fractional separation algebra Q is defined as:
validx :=0< x <1 P:=0
xLly=0<x,yAx+y<l1 xUy =x+y
xCy=0<x<y<l1 x\y=x—y



Organization of permissions

Separation logic: U main connective (from separation algebra)
Operational semantics: need to know what is allowed



Organization of permissions

Separation logic: U main connective (from separation algebra)
Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind, C)

> Freeable: reading, writing, deallocation
Freeable

Writable

/N

Readable Locked

NS

Existing

L



Organization of permissions

Separation logic: U main connective (from separation algebra)
Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind, C)

> Freeable: reading, writing, deallocation
Freeable

‘ > Writable: reading, writing

Writable

/N

Readable Locked

NS

Existing

L



Organization of permissions

Separation logic: U main connective (from separation algebra)
Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind, C)

> Freeable: reading, writing, deallocation
Freeable ) ) o
‘ > Writable: reading, writing

_ » Readable: reading
Writable

/N

Readable Locked

NS

Existing

L



Organization of permissions

Separation logic: U main connective (from separation algebra)
Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind, C)

» Freeable: reading, writing, deallocation
Freeable ] ) o
‘ > Writable: reading, writing
_ » Readable: reading
Writable o ] o
/ \ » Existing: existence permissions, only

pointer arithmetic
Readable Locked

NS

Existing

L



Organization of permissions

Separation logic: U main connective (from separation algebra)
Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind, C)

> Freeable: reading, writing, deallocation

Freeable ] ) o
‘ > Writable: reading, writing
_ » Readable: reading
Writable o ] o
/ \ » Existing: existence permissions, only

pointer arithmetic
Readable Locked . .
\ / » Locked: temporarily locked until next

sequence point

Example: (x = 3) + (xp = 4);
‘ Undefined behavior if &x == p

L

Existing



Organization of permissions

Separation logic: U main connective (from separation algebra)
Operational semantics: need to know what is allowed

Def: Lattice of permission kinds (pkind, C)

»
Freeable

‘ >
>

Writable

/N "
Readable Locked

NS "

Existing

1 >

Freeable: reading, writing, deallocation
Writable: reading, writing
Readable: reading

Existing: existence permissions, only
pointer arithmetic

Locked: temporarily locked until next
sequence point

Example: (x = 3) + (¥p = 4);
Undefined behavior if &x == p

1: no operations allowed

Example: free(p); return (p-p);



Interaction with permission kinds

Def: A C permissions system is a separation algebra A with
functions kind : A — pkind, lock,unlock : A — A
satisfying:

unlock (lock x) = x provided that Writable Cy kind x
kind (lock x) = Locked provided that Writable Cy kind x



Interaction with permission kinds

Def: A C permissions system is a separation algebra A with
functions kind : A — pkind, lock, unIock,% A=A
satisfying:

unlock (lock x) = x provided that Writable Cy kind x
kind (lock x) = Locked provided that Writable Cy kind x
Kind (%x) _ R.eadable if Writz.able Cy kind x
kind x otherwise

) 1
Example: use 5 in x + x



Interaction with permission kinds

Def: A C permissions system is a separation algebra A with

functions kind : A — pkind, lock, unIock,% :A— Aand token : A
satisfying:

unlock (lock x) = x provided that Writable Cy kind x
kind (lock x) = Locked provided that Writable Cy kind x
Kind (%x) _ R.eadable if Writ;.able Cy kind x
kind x otherwise

kind token = Existing

kind (x \ token) = Writable ?f kin.d X = Free-able
kind x if Existing Cy kind x
Example: use % inx + x

Example: use _ \ token in *(p + 1) = (¥p = 1)



Implementation of permissions

Def: C permissions are defined as

perm := F(L(C(Q))) = {Freed} + {o, e} xQ x Q

with:
< ...
Freeable - Y
,,,,,,,,,,, 0(0,1)
F
.......... 0(0,0) ~----------



Implementation of permissions
Def: C permissions are defined as

perm := F(L(C(Q))) = {Freed} + {o, e} xQ x Q

Fractional SA

with:
< ...
Freeable - Y
,,,,,,,,,,, 0(0,1)
F
.......... 0(0,0) ~----------




Implementation of permissions

Def: C permissions are defined as

perm := f(ﬁ(CQt{Freed} +{o,0} xQ xQ

ECountabIe SA] [Fractional SA]

with:
< ...
Freeable - Y
,,,,,,,,,,, 0(0,1)
F
.......... 0(0,0) ~----------



Implementation of permissions

Def: C permissions are defined as

perm := F(L(C(Q))) = {Freed} + {o, e} xQ x Q
R

[Lockable SA] ECountabIe SA] [Fractional SA]

with:
< ...
Freeable - Y
,,,,,,,,,,, 0(0,1)
F
.......... 0(0,0) ~----------



Implementation of permissions

Def: C permissions are defined as

perm := F(L(C(Q))) = {Freed} + {o,e} xQ x Q
— \&

EFreeabIe SA] [Lockable SA] ECountabIe SA] [Fractional SA]

with:

< ...
Freeable - Y
,,,,,,,,,,, 0(0,1)
F
.......... 0(0,0) ~----------



The C memory

Extremely complex:

» Pointer arithmetic

v

Difficult interaction between low and high level
» Types
» Object representations

» Byte-wise operations on all objects

v

Non-aliasing restrictions

Permissions

v



Aliasing

Aliasing: multiple pointers referring to the same object



Aliasing

Aliasing: multiple pointers referring to the same object

int f(int *p, int *q) {
int x = *p; *q = 314; return x;

¥

If p and q alias, the original value n of *p is returned




Aliasing

Aliasing: multiple pointers referring to the same object

int f(int *p, int *q) {
ft—e—=—sd+ps *q = 314; return =% *p;
b

If p and q alias, the original value n of *p is returned

Optimizing x away is unsound: 314 would be returned



Aliasing

Aliasing: multiple pointers referring to the same object

int f(int *p, int *q) {
ft—e—=—sd+ps *q = 314; return =% *p;
b

If p and q alias, the original value n of *p is returned

Optimizing x away is unsound: 314 would be returned

Alias analysis: to determine whether pointers can alias



Aliasing with different types

Consider a similar function:

int h(int *p, float *q) {
int x = *p; *q = 3.14; return x;

3



Aliasing with different types

Consider a similar function:

int h(int *p, float *q) {
int x = *p; *q = 3.14; return x;

3

It can still be called with aliased pointers:

union { int x; float y; } u;
u.x = 271;

return h(&u.x, &u.y); & x zu.y

C89 allows p and g to be aliased, and thus requires it to return 271



Aliasing with different types

Consider a similar function:

int h(int *p, float *q) {
int x = *p; *q = 3.14; return x;

3

It can still be called with aliased pointers:

union { int x; float y; } u;
u.x = 271;

return h(&u.x, &u.y); &u.x zu.y

C89 allows p and g to be aliased, and thus requires it to return 271

C99/C11 allows type-based alias analysis:
> A compiler can assume that p and q do not alias

» Reads/writes with “the wrong type" yield undefined behavior



The C memory as structured forest [Krebbers, CPP'13]

Consider:

struct T {
union U {
signed char x[2]; int y;
}u;
void *p;
}s={{ .x =4{33,34} }, s.u.x + 2 }

As a picture:
Ws =

void#: [ (ptr p)o (ptr p)1 - - - (ptr p)31
.0
signed char:  [10000100[01000100[ 777272727227 [ 722272777 |

p



The C memory as structured forest [Krebbers, CPP'13]

Consider:

struct T {
union U {
signed char x[2]; int y;
}u;
void *p;
}s={{ .x =4{33,34} }, s.u.x + 2 }

As a picture:
Ws =

void#: [ (ptr p)o (ptr p)1 - - - (ptr p)31
.0
signed char:  [10000100[01000100[ 777272727227 [ 722272777 |

p
Captures aliasing restrictions of C11



The C memory as structured forest [Krebbers, CPP'13]

Consider:

struct T {
union U {
signed char x[2]; int y;
}ou;
void *p;
}s={{ .x ={33,34} }, s.u.x + 2 }

As a picture:
Ws =

voids: | (ptr p)o (ptr p)1 - - - (ptr p)31
.0
signed char:  [10000100[01000100[ 777272727227 [ 722272777 |

p
Captures aliasing restrictions of C11
Generalization of [Krebbers, CPP'13] is a separation algebra



The C memory compositionally

Def: The C memory is defined as:

mem := cmap (T2t (F(L(C(Q)))))



The C memory compositionally

Def: The C memory is defined as:

mem := cmap (T2t (F(L(C(Q)))))

Permissions



The C memory compositionally

Def: The C memory is defined as:

mem := cmap (Tz2.it (F(L(C(Q)))))

o

E(Bit) tagged SA] [Permissions}




The C memory compositionally

Def: The C memory is defined as:

mem := cmap (Tz2.it (F(L(C(Q)))))

o

E(Bit) tagged SA] [Permissions}

Structured memory SA
Generalization of
[Krebbers, CPP'13]




The bigger picture / Future work

Separation algebras
for the C memory

( R N
(VSTTE, 2014) Sequence po.lnjts &
= non-determinism
\ _ (POPL, 2014)
C-types & strict [ Non-local control & |
aliasing restrictions block scope variables
(CPP, 2013) (FoSSaCS, 2013)

-




The bigger picture / Future work

Separation
logic for C11’

Separation algebras
for the C memory  peessss= S .
(VSTTE, 2014) Sequence po.lnjts &
= non-determinism
\ _ (POPL, 2014)
C-types & strict [ Non-local control & |
aliasing restrictions block scope variables
(CPP, 2013) | (FoSSaCs, 2013)




The bigger picture / Future work

[ Interpreter for C11’ } Separation
A logic for C11’
S AN

Separation algebras
for the C memory  fee=-»

.
.
1

s - 3 M
(VSTTE, 2014) Sequence po.lnjts &
: X non-determinism
\  (POPL, 2014)
C-types & strict [ Non-local control & |
aliasing restrictions block scope variables
(CPP, 2013) | (FoSSaCs, 2013)




Questions

Sources: http://robbertkrebbers.nl/research/ch2o/

OKAY, HUMAN.

HoH?
BEFORE YoU
HIT (OMPILE)
¥ LISTEN Up

YOU KNOW WHEN YOURE
FALLING ASLEER AND
YOU IMAGINE YOURSELF
WALKING OR
AV SOMETHING,

AND SUDDENLY YOU
NISSTER, STUMBLE,
AND JoLT A‘LJHKE?

YEP\H*

sh

(http://xkecd.com/371/)

\WELL, THAT'S WHAT A
SEGFAULT FEELS LIKE.
P rove®

D"\NN POINTERS, OKAY?

 Jul



http://robbertkrebbers.nl/research/ch2o/
http://xkcd.com/371/

